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Abstract

Respiratory electron transport in mitochondria is coupled to ATP synthesis while generating mutagenic oxygen free radicals.

Mitochondrial DNA mutation then accumulates with age, and may set a limit to the lifespan of individual, multicellular organisms.

Why is this mutation not inherited? Here we demonstrate that female gametes—oocytes—have unusually small and simple mito-

chondria that are suppressed for DNA transcription, electron transport, and free radical production. By contrast, male gametes—

sperm—and somatic cells of both sexes transcribe mitochondrial genes for respiratory electron carriers and produce oxygen free

radicals. This germ-line division between mitochondria of sperm and egg is observed in both the vinegar fruitfly and the zebrafish—

species spanning a major evolutionary divide within the animal kingdom. We interpret these findings as an evidence that oocyte

mitochondria serve primarily as genetic templates, giving rise, irreversibly and in each new generation, to the familiar energy-trans-

ducingmitochondriaof somaticcellsandmalegametes.Suppressedmitochondrialmetabolism in the femalegermlinemay therefore

constitute a mechanism for increasing the fidelity of mitochondrial DNA inheritance.
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Introduction

Mitochondria are eukaryotic subcellular organelles with key

roles in ATP synthesis, programmed cell death (Vaux et al.

1988), Fe-S cluster assembly (Lill and Kispal 2000), and

aging (Harman 1972). Mitochondria originated as prokaryotic

endosymbionts and still carry the remnant of an �-proteobac-

terial genome (Pesole et al. 2012)—in animals usually only 13

protein-coding genes (Anderson et al. 1981; Gray et al. 1999).

These genes encode core subunits of the respiratory electron

transport chain, which generates ATP by means of oxidative

phosphorylation (Mitchell 1961). Three respiratory chain com-

plexes contain both mitochondrial and nuclear gene products,

the latter being imported, as precursors, after synthesis on

cytosolic ribosomes. Mitochondrial DNA (mtDNA) is exposed

to mutagenic reactive oxygen species (ROS) generated as a

by-product electron transport in the inner mitochondrial

membrane. ROS are produced initially by transfers of single

electrons to O2, to give the superoxide anion radical, and con-

tribute to deleterious mtDNA rearrangements that result in

severe diseases in humans (Ames et al. 1995; Balaban et al.

2005; Wallace 2010). These diseases include Pearson syn-

drome, Leigh syndrome, Leber hereditary myopathy, and

some cardiomyopathies, with associated effects including

renal failure, Alzheimer’s disease, and Parkinson’s disease
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(Wallace 2007). mtDNA mutation is thought to occur either in

the female germ line or early in embryonic development

(Wallace et al. 1995), yet surprisingly, few mutations are trans-

mitted to each successive generation. For this, two main

theories are currently debated.

The mitochondrial genetic bottleneck theory states that,

prior to oogenesis, the population of maternal mtDNA mole-

cules in primordial germ cells decreases in size, causing a

genetic bottleneck in which random drift segregates different

mtDNAs (Samuels et al. 2010). Some cells, with decreased

mitochondrial heteroplasmy, may then be selected as benefi-

cial to the developing embryo (Samuels et al. 2010). However,

studies conclude that no reduction of mtDNA copy number

occurs in primordial germ cells (Cao et al. 2009), while other

studies arrive at differing conclusions on variance of mtDNA

between oocytes and developing embryos (Jenuth et al. 1996;

Wai et al. 2008). The second theory, an addition to the bot-

tleneck theory, is that of a “purifying sieve” in the female

germ line; a filter that discriminates between “healthy” and

“unhealthy” mitochondria, allowing only the former to pop-

ulate the offspring. These proposals are supported by results

showing the elimination of a severe mtDNA mutation after a

number of generations (Fan et al. 2008), or by low nonsynon-

ymous/synonymous substitution (dN/dS) ratios observed in

mtDNA sequences over generations (Stewart et al. 2008).

A third and independent hypothesis for faithful transmis-

sion of mtDNA states that oocyte mitochondria are transcrip-

tionally and energetically repressed and hence fail to generate

mutagenic ROS at the same rate as mitochondria of sperm

and somatic cells. According to this view, separation of a line

of quiescent, template mitochondria maintains the integrity of

mtDNA through the female germ line and between genera-

tions (Allen 1996; Allen and de Paula 2013). This hypothesis

appears to be consistent with observations reported for mito-

chondria of a cnidarian, the jellyfish Aurelia aurita (de Paula

et al. 2013). Here we report results of experiments designed to

test whether specific suppression of oocyte mitochondrial

function extends more widely within the animal kingdom.

Accordingly, our experimental subjects were an insect, the

fruitfly Drosophila melanogaster, and a vertebrate, the zebra-

fish Danio rerio. Insects and vertebrates are lineages of proto-

stomes and deuterostomes, respectively, and any general

conclusion might be taken to stand for the Bilateria as a

whole.

Materials and Methods

Drosophila melanogaster strains were maintained on standard

cornmeal/yeast/agar medium at 25 �C (Sadraie and Missirlis

2011). Wild-type flies had been collected from Tannes, Italy.

Bloomington stock 7194 P{sqh-EYFP-Mito} carries a P-element

insertion including the spaghetti squash (sqh) promoter driving

expression of the enhanced yellow fluorescent protein (EYFP)

tagged at the N-terminal end with a mitochondrial targeting

sequence (LaJeunesse et al. 2004). Danio rerio wild-type

strains (Tubingen and Tupfel long fin) were bred and raised

in-house at the zebrafish facility of Queen Mary, University of

London, UK, as previously described by Zimprich et al. (1998).

Work on zebrafish was conducted in accordance with the UK

Animals (Scientific Procedures) Act 1986, with prior approval

by the local institutional animal care committee. Adult fish

were euthanized using a lethal dose of anesthetic (Tricaine

methanesulfonate, MS-222), and tissues were dissected

immediately.

Total mRNA from dissected tissues was isolated using TRI

Reagent (Ambion), treated with DNase I (New England

Biolabs) for 10 min at 37 �C and repurified using Pure

LinkTM RNA Mini Kit (Ambion), all according to the manufac-

turer instructions. Quantitative real-time polymerase chain

reaction (qRT-PCR) was carried out using a Chromo4 real-

time detector (Bio-Rad) and Brilliant III Ultra-Fast SYBR Green

qRT-PCR (Agilent). All messenger RNA quantities were nor-

malized against nuclear-encoded genes rpL32 for D. melano-

gaster and �-actin for D. rerio. A second normalization was

done using intestine average values from both sexes as the

calibration tissue. The primers used in this study are described

in supplementary table S1, Supplementary Material online.

Three technical replicates for each biological replicate were

averaged at the beginning, and three biological replicates

were used to generate the error bars. C(t) values were ana-

lyzed using qBase PLUS2 software (Biogazelle). One-way

analysis of variance (ANOVA) with post-Tukey’s multiple com-

parison test with a significance level set at P� 0.05 was

used as statistical treatment (supplementary table S2,

Supplementary Material online).

Confocal light microscopy was employed to visualize and

compare mitochondrial inner membrane potential and pro-

duction of ROS. For mitochondrial membrane potential anal-

ysis, freshly dissected tissues were equilibrated in 500 nM

Mitotracker Red FM (Molecular Probes) dissolved in phosphate

buffered saline (PBS) for approximately 30 min at room tem-

perature. For zebrafish only, an additional 500 nM of

Mitotracker Green FM was used simultaneously. Three

washes in pure PBS were used to remove the probe excess.

For ROS detection, we followed the method described by

Owusu-Ansah et al. (2008) with minor modifications. Freshly

dissected tissues were equilibrated in a solution containing

20,70-dichlorodihydrofluorescein (H2DCF-DA, Sigma) at

10mM final concentration, also containing 40,6-diamidino-2-

phenylindole dihydrochloride (DAPI) (Sigma) at 1mM final con-

centration, at room temperature PBS for 30 min, followed by

three PBS washes. Microscopy was performed using a Leica

TCS SP5 confocal microscope (Leica Microsystems). Excitation

and emission wavelengths were selected for the different

probes as follows: DAPI, 350 nm/450–480 nm; H2DCF-DA,

488 nm/520–550 nm; Mitotracker Green, 488/500–530 nm;

YFP, 514/520–560 nm; and Mitotracker Red, 581/620–

650 nm. Imaging was performed with a 63� lens, and laser
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output was kept under 15% of maximal power. Leica LAS AF

software was used to acquire the images. ImageJ software

(Schneider et al. 2012) was used to measure and calculate

the mean pixel intensity of 8-bit acquired images (0–255).

For transmission electron microscopy (TEM), specimens

were fixed overnight in 2.5% (v/v) glutaraldehyde in 0.1 M

cacodylate buffer (pH 7.3) and postfixed in 1% (w/v)

osmium tetroxide in 0.1 M cacodylate buffer (pH 7.3) for

1.5 h. Samples were then dehydrated through a graded eth-

anol series, equilibrated with propylene oxide before infiltra-

tion with Spurr resin (TAAB Laboratories), and polymerized at

70 �C for 24 h. Infiltration times were increased to 48 h for

Drosophila samples, to aid resin penetration through the ab-

dominal cuticle. Ultrathin sections (70–90 nm) were prepared

using a Reichert-Jung Ultracut E ultramicrotome, mounted on

150 mesh copper grids, contrast-stained using uranyl acetate

and lead citrate, and examined on a FEI Tecnai 12 transmission

microscope operated at 120 kV. Images were acquired with

an AMT 16000 M digital camera. For stereological analysis

(Howard and Reed 2010), 30 mitochondria from each

group were aligned on a combined point counting grid

composed of two sets of points of different densities on the

same grid; nine fine points per coarse point. The volume of

reference (mitochondria) was estimated as nine times the

number of coarse points that cross the reference space. The

volume of the particular phase (cristae) was estimated by

counting the number of fine and coarse points that inter-

sected the cristae.

Results

Transcription of Mitochondrial Respiratory Chain Genes

To determine whether oocyte mitochondria are transcription-

ally active, we studied the expression of three mitochondrial

genes, nad1, cob, and cox1. Each of these genes encodes a

protein subunit of the respiratory electron transport chain, as

shown schematically in figure 1a. mtDNA transcriptional rate

has been correlated with energy output (Virbasius and

Scarpulla 1994; Mehrabian et al. 2005). For Drosophila and

zebrafish, we find that ovary has the lowest transcriptional

rates for these three mitochondrial genes when compared

with other somatic tissues and to sperm, as shown in figure 1b.

In both species, we find that the quantity of the gene tran-

scripts in ovary is approximately 15-fold lower than in active

somatic tissues such as flight muscle in Drosophila and skeletal

muscle in zebrafish. The difference between ovary and intes-

tine was 3.2-fold for Drosophila and 5.5-fold for zebrafish

(fig. 1b). We also detected normal levels of respiratory electron

transport chain gene transcripts in testis, indicating that de-

creased mitochondrial transcription is specific to female

gonads. qRT-PCR primers are as in supplementary table S1,

Supplementary Material online, and statistical analysis of data

is presented in supplementary table S2, Supplementary

Material online.

Mitochondrial Inner Membrane Potential

To further investigate the bioenergetic state of female germ

line mitochondria, we performed confocal light microscopy

using a combination of a mitochondrial marker with a

proton motive force-reporting dye (Pendergrass et al. 2004).

Mitochondria in Drosophila ovary at stages 5 and 7 (Bastock

and St Johnston 2008) (fig. 2a) and zebrafish ovary at stages 3

and 4 (Selman et al. 1993) (fig. 2b) are seen to be in a qui-

escent state, with a decreased membrane potential compared

FIG. 1.—Relative quantities of mitochondrial mRNA measured for

three key protein subunits of the mitochondrial respiratory chain. (a) A

schematic representation of the respiratory electron transport chain of the

mitochondrial inner membrane. The protein subunits highlighted in blue,

green, and yellow represent the products of the mitochondrial genes

nad1, cob, and cox1, respectively. Structures are surface models drawn

using PyMol (Schrodinger 2010) from Protein Data Bank (PDB) atomic

coordinate files with the following accession numbers: respiratory complex

I (NADH-ubiquinone oxidoreductase), 3M9S; respiratory complex II (succi-

nate dehydrogenase), 1ZOY; respiratory complex III (the cytochrome b-c1

complex), 1QCR; complex IV (cytochrome c oxidase), 1V54. (b) Respiratory

electron transport gene expression profile. Quantities are shown for mito-

chondrial mRNA expressed in different tissues of male and female individ-

uals of D. melanogaster and D. rerio. The color coding is the same as that

used in (a): blue, nad1; green, cob; yellow, coxI. Error bars indicate stan-

dard error of the mean (SEM). P� 0.05. See also supplementary tables S1

and S2, Supplementary Material online.
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with that in follicle cells. By contrast, sperm cells exhibit mito-

chondrial membrane potential typical of active ATP synthesis

(Drosophila, fig. 2c; zebrafish, fig. 2d). There are clearly two

broad classes of mitochondria in gonads—energy-transducing

mitochondria of follicle, sperm, and somatic cells, and bioe-

nergetically suppressed mitochondria in the ovary (fig. 2a

and b). See also supplementary figure S1 and movie S1,

Supplementary Material online.

Production of ROS

To estimate the production of ROS by female germ cells,

Drosophila ovary at stages 3, 5, and 7 (fig. 3a), and zebrafish

FIG. 2.—Mitochondrial inner membrane electrical potential visualized in ovary and sperm cells. Mitochondrial membrane potential in Drosophila ovary

(a), zebrafish ovary (b), Drosophila sperm (c), and zebrafish sperm (d). The bright field micrograph shows the corresponding scale bars. Mitochondrial YFP

(Drosophila) and Mitotracker Green FM (zebrafish) report the presence of intact mitochondria in the green channel. Mitotracker Red FM reports the relative

membrane potential in those mitochondria in the red channel. Overlay of both channels highlights two different populations of mitochondria seen in (a and

b) ovary. White arrows point to inactive female gamete mitochondria. Yellow arrows indicate somatic, active mitochondria, which accumulate the red dye

indicating presence of membrane potential. In (c) and (d), blue arrows indicate active male gamete (sperm) mitochondria as a control. See also supplementary

figure S1 and movie S1, Supplementary Material online.
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egg cell types I and II (fig. 3b) were stained with DAPI, visual-

izing DNA as blue, and with the ROS indicator H2DCF-DA,

which fluoresces green when oxidized. This fluorophore is

used to estimate ROS production in situ (Owusu-Ansah

et al. 2008). Within ovaries of Drosophila (fig. 3a) and zebra-

fish (fig. 3b), diploid follicle cells show, respectively, 50-fold

and 100-fold higher H2DCF-DA fluorescence intensity than

the female germ cells that they surround (supplementary fig.

S2, Supplementary Material online). We further certified that

the differences in the fluorescence intensity found in those

two cells types were not due to discrepancies in the number

of mitochondria per cell and per area analyzed (supplementary

FIG. 3.—Mitochondrial production of ROS visualized in ovary and in sperm cells. ROS accumulation in Drosophila ovary (a), zebrafish ovary (b), Drosophila

sperm (c), and zebrafish sperm (d). The bright field micrograph shows the corresponding scale bars. DAPI indicates nuclear DNA in the blue channel. Oxidized

H2DCF-DA is seen in the green channel and reports the relative amount of ROS in different tissues. Merged overlay of both channels highlights the

abundance of ROS in diploid follicle cells compared with the female germ line cells in images (a) and (b), suggesting a reduced rate of electron transfer to

oxygen in this cell type. Yellow arrows point to sperm mitochondria, which accumulate ROS as shown in images (c) and (d). See also supplementary figure S2

and movie S2, Supplementary Material online.
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fig. S1, Supplementary Material online) but rather due to dif-

ferences in mitochondrial activity. By contrast, sperm cells

show H2DCF-DA fluorescence in their mitochondria as seen

in figure 3c for Drosophila and figure 3d for zebrafish. The

results in figure 3 suggest that ROS production, like mtDNA

transcription (fig. 1b), is repressed specifically in oocyte mito-

chondria. See also supplementary figure S2 and movie S2,

Supplementary Material online.

Mitochondrial Ultrastructure

We examined the ultrastructural morphology of mitochondria

in Drosophila flight muscle (fig. 4a) and zebrafish cardiac

muscle (fig. 4e), in sperm (Drosophila, fig. 4b; zebrafish,

fig. 4f), and in ovary (Drosophila, fig. 4c; zebrafish, fig. 4g).

In fruitfly and zebrafish muscle (fig. 4a and e), the single mi-

tochondrion in the field of view is large and has numerous

cristae. It is also seen for both species that the mitochondrial

matrix presents a relatively high density of the osmium stain.

Drosophila sperm mitochondria (fig. 4b) are morphologically

specialized, containing a paracrystalline lattice (Perotti 1973),

and are therefore more difficult to compare. However, zebra-

fish sperm mitochondria (fig. 4f) show typical mitochondrial

inner-membrane invagination and matrix density characteris-

tic of metabolically active mitochondria. By contrast, Droso-

phila and zebrafish ovaries (fig. 4c and g, respectively), on the

same scale, contain small (<0.5mm) mitochondria of much

simpler morphology, present in a cytoplasm rich in ribosomes

and distinct from the nucleus from which it is separated by the

characteristic nuclear double membrane (fig. 4c). In both spe-

cies, stereological analysis confirms that oocyte mitochondrial

cristae account for a much lower proportion of total mito-

chondrial volume than in other tissues (fig. 4d and h for Dro-

sophila and zebrafish, respectively).

Discussion

Although errors in mtDNA replication have been demon-

strated to produce inherited mitochondrial defects and

aging in mice (Ross et al. 2013), animal mtDNA may also ac-

cumulate mutations in part because aerobic respiration gen-

erates mutagenic ROS in close proximity to mtDNA. Repair

mechanisms, including base excision, may help to decrease

or postpone pathological effects, while their failure to correct

mtDNA mutation is implicated in, for example, human neuro-

degenerative disease (Santos et al. 2013). ROS-induced

FIG. 4.—Mitochondrial ultrastructure in somatic cells and in male and female gametes. Transmission electron micrographs of D. melanogaster (a) flight

muscle, (b) sperm, and (c) oocyte; and D. rerio (e) cardiac muscle, (f) sperm, and (g) oocyte. Letter (m) indicates mitochondria, (n) a haploid nucleus, and (f) a

flagellum. Oocyte mitochondria are seen as simpler structures, ranging from 200 to 500 nm, lacking cristae development and matrix electron density (c and

g). Muscle (a and e) and sperm (b and f) mitochondria were used as a somatic and male gametic tissue control samples for normal development, respectively.

Images were taken using 9,300� magnification. The scale bar corresponds to 500nm. Stereological analysis of the morphological variations among the

three samples: (d) Drosophila; (h) Danio. V(c,m) is the ratio of crista volume to mitochondrion volume. Error bars are SEM, P� 0.01.
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mutation will be averted in the first place by repression of

mitochondrial activity, giving decreased frequency of muta-

tion, and a decrease in the rate of accumulation of mitochon-

drial mutational load. A further consequence of oocyte

mitochondria acting as protected genetic templates is that

full female fertility may depend upon absence of oocyte

mitochondrial oxidative phosphorylation, rather than on its

presence, as often supposed (Hsieh et al. 2004; Chappel

2013), whereas it is also clear that ATP synthesis proceeds in

at least the majority of cells in the early mammalian embryo

(Dumollard et al. 2007; Nunnari and Suomalainen 2012).

Repression of mtDNA transcription has been proposed as

the evolutionary pressure that gave rise to the female germ

line (Allen 1996). There is evidence for repressed respiratory

oxygen uptake, complex IV activity, and ROS production in

oocytes of the amphibian, Xenopus laevis (Kogo et al.

2011). Species lacking mtDNA or respiring anaerobically

seem not to require a female germ line at all (Ayala 1998).

Expression of mitochondrial and nuclear genes for individual

respiratory chain complexes is coordinated, for example in

mammalian neurons (Dhar et al. 2013), and repression of

mtDNA transcription may be expected to result in effective

silencing of corresponding nuclear genes for imported mito-

chondrial precursors.

The results presented here demonstrate that oocyte mito-

chondria are in a quiescent state in both a protostome

(D. melanogaster) and a deuterostome (D. rerio), representing

the two branches of the Bilateria. We interpret this result as a

nonpathological condition that secures the faithful maternal

transmission of mtDNA, from germ line to germ line, across

FIG. 5.—A model for maintenance of mtDNA by maternal inheritance of template mitochondria transmitted in the cytoplasm. An oocyte (egg cell)

contains a nucleus with a haploid chromosome number (n) and a cytoplasm with multiple template mitochondria. A sperm cell, also with a haploid nucleus

(n), is motile, and its motility requires ATP from active mitochondria performing oxidative phosphorylation (OXPHOS). Following fertilization, active sperm

mitochondria are rapidly degraded, leaving only the maternal, template mitochondria in the cytoplasm of the diploid (2 n) zygote (or fertilized egg).

Successive cell divisions in embryogenesis involve mitosis and differentiation—and division—of most template mitochondria into active OXPHOS mitochon-

dria, which eventually dominate and populate not only somatic tissues but also the male germ line in which sperm are generated by meiosis in males for the

next generation. However, some cells are sequestered and continue to carry only quiescent, template mitochondria, through meiosis and oogenesis to give

the oocytes of females in the next generation. These cells comprise the female germ line. Female germ cells are never supplied with ATP by oxidative

phosphorylation in their own mitochondria, but depend for their maintenance, at low metabolic rate, on ATP supplied, directly or indirectly, by neighboring

somatic cells (follicle cells or nurse cells) that are specially adapted for this role. This hypothesis, after Allen (1996), predicts that the female germ line forms an

indefinitely replicating vehicle for accurate transmission of mtDNA between generations. See also supplementary movie S3, Supplementary Material online.
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generations (Allen 1996). Even in exceptional species with

doubly uniparental inheritance of mtDNA, only a female

germ line gives rise to mitochondria of another female germ

line, while the male germ line mitochondria can be inherited

from either sex (Zouros et al. 1994; Ghiselli et al. 2013).

It should be noted that uniparental inheritance of mitochon-

dria is also the rule in single-celled eukaryotes, protists, with

morphologically indistinguishable isogametes (Gyawali and

Lin 2011). For multicellular eukaryotes, our conclusion is

summarized in figure 5 and supplementary movie S3,

Supplementary Material online. This interpretation is consis-

tent with results reported for a cnidarian, the jellyfish A. aurita

(de Paula et al. 2013), and might therefore be predicted to

apply as a basic pattern of template mitochondrial transmis-

sion within the entire animal kingdom.

If quiescent, template mitochondria divide and differentiate

into energetically active mitochondria, then the somatic cells

and male gametes of each successive generation will be sup-

plied with fresh mitochondria that are accurate copies of those

previously supplied, furnishing cells with a supply of energy in

the form of ATP for energy coupling in biosynthesis, transport,

mechanical work, growth, and reproduction. Rather than en-

visaging a recovery of uncorrupted mtDNA from energetically

active mitochondria, either by a genetic bottleneck (Samuels

et al. 2010) or by purifying selection (Fan et al. 2008; Stewart

et al. 2008), we suggest that the differentiation step from the

genetic template is irreversible (Allen 1996). If this is correct,

then a small subpopulation of template mitochondria will

remain quiescent throughout animal development, and sam-

ples from this subpopulation will be transmitted indefinitely

through successive female germ lines, eventually to populate

both somatic and germ cells of each new generation (Allen

and de Paula 2013)

It is possible that the evolutionary origin of separate sexes

provided the solution to an inherent incompatibility between

mitochondrial bioenergetic efficiency and fidelity of intergener-

ational transmission of mtDNA. Mitochondria are considered as

key to the emergence of both eukaryotes (Martin and Muller

1998; Lane and Martin 2010) and multicellularity (Lane and

Martin 2010; Blackstone 2013). Nevertheless, studies of the

role of mitochondria in metazoan development tend to

concentrate on direct metabolic and redox control of nuclear

gene expression (Coffman 2009) rather than considering mito-

chondrial gene expression as an initiator or intermediary in

orchestrated cell differentiation. It is also of interest to consider

whether sexual dimorphism in gonad development (Mittwoch

2013) derives from dimorphism of mitochondria in the germ

cells of the two sexes. In view of the complementarity of female

and male mitochondria in a cnidarian (de Paula et al. 2013) as

well as in examples of the two major branches of the Bilateria

(this study), it seems likely that the requirement for a lineage of

quiescent, genetic template mitochondria contributed to the

evolutionary origin of the female germ line.

Supplementary Material

Supplementary figures S1 and S2, movies S1–S3, and tables

S1 and S2 are available at Genome Biology and Evolution

online (http://www.gbe.oxfordjournals.org/).
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