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ABSTRACT  

Two-component signal transduction systems (TCSs) consist of sensor histidine 

kinases and response regulators. TCSs mediate adaptation to environmental changes 

in bacteria, plants, fungi, and protists. Histidine kinase 2 (Hik2) is a sensor histidine 

kinase found in all known cyanobacteria and as chloroplast sensor kinase in 

eukaryotic algae and plants. Sodium ions have been shown to inhibit the 

autophosphorylation activity of Hik2 that precedes phosphoryl transfer to response 

regulators, but the mechanism of inhibition has not been determined. We report on the 

mechanism of Hik2 activation and inactivation probed by chemical crosslinking and 

size exclusion chromatography together with direct visualisation of the kinase using 

negative-stain transmission electron microscopy of single particles.  We show that the 

functional form of Hik2 is a higher order oligomer such as a hexamer or octamer. 

Increased NaCl concentration converts the active hexamer into an inactive tetramer. 

Furthermore, the action of NaCl appears to be confined to the Hik2 kinase domain.  

IMPORTANCE Bacteria sense change and respond to it by means of two-

component regulatory systems.  The sensor component is a protein that becomes 

covalently modified by a phosphate group on a histidine side chain.  The response 

regulator accepts the phosphate group onto an aspartate, with structural and functional 

consequences, often for gene transcription.  Histidine kinase 2 is a sensor of sodium 

ion concentration and redox potential, regulating transcription of genes for light-

harvesting and reaction center proteins of photosynthesis in cyanobacteria and 

chloroplasts of algae and plants.  Using radiolabeling, chemical crosslinking, 

chromatography and electron microscopy, we find that sodium ion concentration 

governs the oligomeric state of Histidine Kinase 2 and its phosphorylation by ATP.  
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INTRODUCTION 

Bacteria, algae, plants and fungi adapt to changes in their environments, and often 

utilise a sensor-response circuit known as a ‘two-component signal transduction 

system’ (TCS) to elicit physiological responses. TCSs are particularly diverse and 

widely distributed in bacteria. The simplest form of a TCS consists of just two 

proteins: a conserved sensor histidine kinase (component 1) and a response regulator 

(component 2).  

A signal transduction cascade in bacteria usually begins at the cell membrane from 

where the signal propagates to the cytoplasm through the transmembrane domain of a 

sensor histidine kinase. The environmental cue is detected by the sensor domain 

located near the N-terminus of the histidine kinase polypeptide. Sensor histidine 

kinases also exist as soluble cytoplasmic proteins that perceive changes within the cell. 

Functional forms of both membrane-anchored and soluble histidine kinases occur 

predominantly as homodimers that contain conserved dimerization and 

phosphotransfer (DHp) and catalytic and ATP-binding (CA) domains. A higher-order 

oligomeric state, the tetramer, is promoted by an intermolecular disulfide bond in the 

histidine kinases DcuS (dicarboxylate uptake sensor and regulator) (1), RegB 

(Regulator B) (2), AtoS (Sensor kinase controlling ornithine decarboxylase antizyme) 

(3), and KdpD (Osmosensitive potassium channel sensor histidine kinase) (4). 

Formation of the higher-order oligomer appears to silence their autophosphorylation.  

In contrast, the well characterised soluble histidine kinases EnvZc (Core kinase 

domain of EnvZ) (5), VirAc (Virulence A) (6), and CheA (Chemotaxis histidine 

kinase A) (7) are reported to exist solely as inactive monomers or as active dimers. 
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An in vitro study with the CheA sensor kinase indicates that its oligomeric state is 

concentration-dependent. CheA exists at low protein concentrations predominately as 

an inactive monomer while the extent of its dimerization increases with increasing 

protein concentration (7). Thus, CheA is likely to exist in vivo at equilibrium between 

its inactive monomeric and active dimeric forms, with its interaction with a ligand 

acting as a signal that shifts this equilibrium towards the active dimer. In contrast, the 

membrane-anchored sensor kinase DcuS from E. coli exists as monomer, dimer and 

tetramer both in vitro and in vivo (1). The ArcB sensor kinase of E. coli contains two 

conserved redox-active cysteines that are regulated by the redox state of ubiquinone. 

Oxidation of these cysteines leads to intermolecular disulfide bond formation between 

two monomers of ArcB, locking it into a tetrameric state inactive as a protein kinase 

(8, 9). The RegB histidine kinase of purple photosynthetic bacteria is also converted 

from an active dimer to an inactive tetramer by oxidation of its conserved cysteine (2).  

Histidine kinase 2 (Hik2) is one of the three fully conserved histidine kinases found in 

cyanobacteria (10). The closest Hik2 homologue in nearly all algae and higher plants 

is Chloroplast Sensor Kinase (CSK) (11). A recombinant cyanobacterial Hik2 protein 

undergoes autophosphorylation on its conserved histidine residue and transfers the 

phosphoryl group to response regulators Rre1 and RppA (12). Rre1 is also modulated 

by Hik34 in response to increased temperature (13).  

In its unmodified state, Hik2 appears to be autokinase active, and treatment with Na+ 

ions abolishes its autophosphorylation (12). The exact mechanism by which the 

activity of Hik2 is switched off by Na+ ions is not yet clear. Here we determine the 

mechanism of Hik2 activation and inactivation using chemical crosslinking and size 

exclusion chromatography, together with direct visualisation of the kinase using 

negative-stain transmission electron microscopy of single particles.  We show that 
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Hik2 is present in multiple oligomeric states in vitro and that a signal such as Na+ 

converts higher oligomers into the tetramer, thus inactivating it as the protein kinase 

that otherwise donates the phosphoryl group to its response regulators. 

 

RESULTS 

Distribution of Hik2 and domain architecture. Histidine kinases contain a 

conserved kinase core domain and a variable sensor domain. The kinase core domain 

is essential for autokinase and phosphotransfer activities. The Hik2 homolog that is 

present in almost all cyanobacteria and plants contains a conserved kinase core 

domain consisting of DHp and CA together with a GAF sensor domain (11, 12).  In 

three cyanobacterial species Hik2 is present as a truncated form without a GAF sensor 

domain (14). We have examined the domain architecture and distribution of Hik2 

homologs in cyanobacteria and chloroplasts. Hik2 domain architecture revealed that 

there are two forms of the Hik2 proteins in cyanobacteria and chloroplasts.  Here 

these forms are designated class I and class II (Table 1 and Figure 1). Class I Hik2 

proteins contain the full-length GAF domain as predicted with SMART database. 

Class II Hik2 proteins are predicted to have no GAF domain. As shown in Table 1, 

most cyanobacteria and chloroplasts have a class I Hik2. The least widely distributed 

Hik2 is the class II protein that is found only in three cyanobacteria, consistent with 

the finding of Ashby et al (14).  

Recombinant protein production. The following proteins were cloned, 

overexpressed and purified from E. coli.: full-length Synechocystis sp. PCC 6803 

(Syn_Hik2F); full-length Thermosynechococcus elongatus BP-1 Hik2 (Ther_Hik2F); 

the truncated core kinase domain of T. elongatus BP-1 protein containing only the 
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DHp and CA subdomains (Ther_Hik2T); and the truncated DHp domain of T. 

elongatus BP-1 (Ther_DHp).  Figure 2, lane 7 shows the purified Syn_Hik2F; lane 8, 

Ther_Hik2F; lane 9, Ther_Hik2T; lane 10 Ther_DHp. The calculated molecular 

weights are: Syn_Hik2F, 48.5 kDa; Ther_Hik2F, 44.2 kDa; Ther_Hik2T, 26.2 kDa; 

and Ther_DHp, 15.1 kDa. The apparent molecular weights on the SDS-PAGE are: 

Syn_Hik2F, 50 kDa; Ther_Hik2F, 45 kDa; Ther_Hik2T, 29 kDa; and Ther_DHp, 16 

kDa. 

Hik2 exists in higher-order oligomeric states.  An earlier study has shown that 

sodium ions inhibit the autophosphorylation activity of full-length Hik2 (12). In order 

to elucidate its salt sensing mechanism, we investigated the oligomeric state of Hik2 

in a buffer supplemented with or lacking NaCl. The oligomeric state of Hik2 was 

explored by size exclusion chromatography and chemical crosslinking with 

dithiobis(succinimidylpropionate) (DSP). These two techniques were chosen because 

size exclusion chromatography is most suited for stable protein-protein interactions, 

while DSP provides a more direct method of studying transient semi-stable protein-

protein interactions. DSP is a symmetric molecule with two reactive groups connected 

by a spacer arm that is 12 Å in length. Thus DSP can form amide bonds with amino 

groups of two polypeptides that are in close proximity, for example, between two 

monomers in a dimer or between two dimers in a tetramer. DSP links polypeptides 

that interact under physiological conditions and therefore has advantages for studying 

oligomeric states of semi-stable protein-protein interactions. 

In order to determine whether the oligomeric state of Hik2 is dependent on DSP 

concentration, Hik2 proteins were incubated with different concentrations of the 

crosslinker DSP for 10 minutes at 23 ºC. Crosslinked products were then resolved on 

a non-reducing SDS-PAGE. Figure 3A, lane 2 shows that the untreated Hik2 protein 
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migrated on a non-reducing SDS-PAGE with an apparent molecular weight of 50 kDa, 

corresponding to its monomeric form. Figure 3A, lanes 3-10 indicate that chemical 

crosslinking produced four distinct protein bands at apparent molecular weights 

corresponding approximately to multiples of 50 kDa.  The first band at 50 kDa can be 

assigned to the monomer; a second band just above 190 kDa to a tetramer; and two 

further bands above 250 kDa to higher oligomers, possibly a hexameric and octameric 

form. Although increasing the concentration of DSP from 1 mM to 3 mM had no 

effect on the oligomeric state of Hik2 (Figure 3A, lanes 2-4), increasing the 

concentration above 3 mM resulted in a decrease in both monomeric and higher-order 

oligomers (Figure 3A, lane 3-12) and therefore only 2 mM of DSP was used in 

subsequent experiments.   

It has been shown that dimerization of CheA is concentration dependent (7). We 

therefore examined whether the oligomeric state of Hik2 depends on its concentration. 

Crosslinking was performed with differing concentrations of Hik2 proteins, ranging 

from 2 to 50 µM, while the concentration of DSP, incubation times, and temperature 

were kept constant. Equal quantities of crosslinked Hik2 proteins were then analysed 

with non-reducing SDS-PAGE. No correlation is observed between the apparent 

quantity of the monomeric state of Hik2 and protein concentration while the quantity 

of the tetramer appears to decrease and hexamer and octamer increased with 

increasing protein concentration (Figure 3B).  

Monomer, tetramer, and hexamer forms of Hik2 are autokinase active and salt 

converts the higher-order oligomers into a tetramer. In order to investigate the 

functional states of Hik2 oligomers, we carried out autophosphorylation of Hik2 

before and after it was crosslinked. Figure 4A, lane 2, shows Hik2 protein that was 

allowed to autophosphorylate and then crosslinked with DSP. The result was 
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phosphorylated monomeric, tetrameric, and higher order oligomeric forms. Figure 4A, 

lane 3, shows that Hik2 protein, which was first crosslinked and then subjected to the 

autophosphorylation assay, produced monomers, tetramers and higher oligomers 

relatively inactive in autophosphorylation. Thus crosslinking may lock the protein 

into an inactive state. Since the activity of Hik2 is suppressed by salt (12), we then 

investigated the effect of salt on the oligomeric state of Hik2. Figure 4B, lane 2, 

shows NaCl untreated and non-crosslinked Hik2 protein migrating as monomers, and 

in lane 3 NaCl untreated but crosslinked protein migrating as monomers, tetramers 

and higher-order oligomers as expected. Lane 4 shows Hik2 that was treated with 

NaCl first and then crosslinked.  Addition of NaCl appears to have resulted in the 

conversion of the hexamers and octamers into tetramers. The proportion of the 

monomeric form is also decreased in figure 4B, lane 4 in the salt-treated sample. 

NaCl converts the active hexamer form of Hik2 into a tetramer.  On a Superdex 

200 column calibrated with buffer lacking NaCl the full-length Synechocystis and 

Thermosynechococcus and the truncated Thermosynechococcus Hik2 proteins eluted 

as hexamers with apparent molecular weights of 380 kDa, 260 kDa and 150 kDa, 

respectively (Figure 5A, 5B and 5C, solid lines). In the presence of NaCl, the apparent 

molecular weight was shifted from 380 to 200 kDa for Synechocystis Hik2, from 260 

to 200 for Thermosynechococcus Hik2, and from 150 to 100 for the truncated 

Thermosynechococcus Hik2, corresponding to tetrameric forms (Figure 5A, 5B and 

5C, broken lines). These results may be consistent with those obtained from 

crosslinking experiments (Figure 4B), provided that one assumes that contributions 

from tetramers to overlapping bands are difficult to resolve in the samples untreated 

with NaCl. Since the DHp domain of the histidine kinase is important for its 

dimerisation activity, we explored the role of the DHp domain in higher order 
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oligomeric formation. Figure 5D shows that the DHp domain of 

Thermosynechococcus formed high order oligomers that may be octamers in buffer 

without NaCl, and that the ‘octamers’ converted to ‘hexamers’ upon treatment with 

NaCl.  It may be concluded that the DHp domain is of central importance for the salt 

sensing activity of Hik2. The oligomeric states observed for the DHp domain are 

different from those seen for the full-length proteins, and it is possible that these are 

controlled by additional interactions involving other domains. It was noted that 

oligomeric states equivalent to the full-length proteins were only observed for the 

truncated Thermosynechococcus Hik2 (Thermo_Hik2T) form, thus it is possible the 

CA domain may play a role in defining the Hik2 oligomeric state.  

Transmission electron microscopy (TEM) and single particle analysis of 

negatively stained Hik2. Five independent samples were negatively stained and 

imaged using a JEOL 1230 TEM equipped with a 2k Olympus Morada CCD camera 

system and those micrographs that displayed the highest quality (41 from a total of 

201, see Methods) were carried forward for single particle image analysis. Figure 6 is 

a micrograph of a negatively stained Synechocystis Hik2 protein sample as observed 

by TEM at 80,000 × magnification and typical for those used in the single particle 

image-averaging analysis. The high contrast produced by the uranyl acetate stain 

allowed for the visual inspection of protein complexes. A variety of different sizes 

and orientations were observed. A dataset of 13,341 individual protein complex 

images was built and subjected to reference-free alignment and multivariate statistical 

classification using Imagic-5 software. The spread of oligomeric states, i.e. structural 

heterogeneity, may be appreciated by relaxing the classification constraints so that 

the TEM-derived dataset is represented as 600 class averages after four rounds of 

iterative refinement (Figure 7).  After four rounds of iterative refinement, unassigned 
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particles were excluded leaving 11,371 particles that were classified into 100 class 

averages, or ‘characteristic views’ (Figure 8 and Table 2). Each row of Figure 9 

depicts four of these characteristic views for each of the different oligomeric complex 

families assigned subjectively; monomers, dimers, trimers, double dimers or 

hexamers, and broken or ambiguous density, respectively. It cannot be ruled out that 

the oligomers shown in Figures 9B and 9C are double dimers (dimers of dimers) and 

double trimers (trimers of dimers), respectively, viewed in projection. Similarly, it is 

possible that the oligomers shown in Figure 9C are double trimers or double tetramers 

(dimers of tetramers) viewed in side elevation.  

 

DISCUSSION  

It has been suggested that membrane bound and soluble histidine kinases are 

homodimeric in their functional forms (15-17) and that some histidine kinases 

interconvert between an inactive monomer and an active dimer (7). Although histidine 

kinases are also reported to exist in higher order oligomeric states, these states seem 

to be autokinase inactive. The exception is the hybrid histidine kinase ExsG, which 

has been shown to be active as a hexamer (18). The work presented here was directed 

at elucidation of the oligomeric states of the soluble cyanobacterial Hik2 protein. 

Using chemical crosslinking, size exclusion chromatography profiles, and 

transmission electron microscopy, we find that the full-length Hik2 protein exists as 

tetramers, hexamers and other higher-order oligomers (Figures 3, 5 and 7). Further 

analysis of the oligomeric states of Hik2 using truncated forms of the protein revealed 

that the oligomeric state of Hik2 is controlled by its kinase domain (Figures 5C and 

5D), and that treatment with NaCl converts the hexamer into a tetramer (Figures 4B 
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and 5), rendering the kinase inactive. Furthermore, the Hik2 protein is not always 

present in its full length form, and may be truncated in certain photosynthetic 

organisms (Table 1). 

The occurrence of Hik2 in different forms implies that it may have multiple functions, 

some specific to certain species. The class I Hik2 protein homologs, which are found 

in chloroplasts and cyanobacteria, have a fully conserved GAF domain as their sensor 

domain and may therefore be able to sense a variety of signals. The class II Hik2, 

found only in marine cyanobacteria, have lost the GAF sensor domain completely 

(Table 1 and Figure 1). Based on the results in Figures 5C and 5D, the activity of this 

class II Hik2 may be regulated through its kinase domain. Class II Hik2 are found 

only in three cyanobacterial species; Gloeobacter violaceus PCC 7421, 

Synechococcus sp. JA-2-3B'a(2-13), and Synechococcus sp. JA-3-3Ab. Current 

phylogenetic trees indicate that these three cyanobacteria diverged very early from 

other cyanobacteria (19).  It is therefore possible that the ancestral Hik2 protein 

lacked a sensor domain and later acquired the GAF sensor domain through gene 

fusion or acquisition.  Alternatively, the sensor domain of class II Hik2 within those 

three cyanobacteria might have been lost after they diverged from a common ancestor 

with a sensor domain-containing Hik2.  

The activity of histidine kinases is modulated by environmental cues through signal-

induced conformational changes (20-22).  Chemical crosslinking and size exclusion 

chromatography were utilised in order to understand the effect of salt stress on the 

oligomeric state an activity of Hik2. Both techniques revealed that the Hik2 protein 

complex exists predominantly as tetrameric, hexameric and other higher order 

oligomeric forms (Figures 3 and 5). Monomers are visible in Figure 3A and 3B, lane 

3. However, salt treatment decreased the monomeric forms of Hik2 (Figure 4B, lane 
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4). Interestingly, unlike the histidine kinases CheA (7), DcuS (1), ArcB (8, 9), and 

RegB (2) the dimeric form of Hik2 was not detected, indicating that higher order 

oligomers are the stable forms. Furthermore, the higher order oligomeric states of 

Hik2 were functionally active (Figure 4A). Treatment of Hik2 with NaCl converted 

the monomer, hexamer and octamer into the tetramer (Figure 4B, lane 4, and Figure 

5). Results obtained from crosslinking (Figure 4) and size exclusion chromatography 

(Figure 5) indicate that the inactivation mechanism of Hik2 involves the conversion of 

the higher order oligomers into the tetramer. What remains to be clarified, however, is 

how it is possible that tetramers in Hik2 samples that were not treated with NaCl 

exhibit autokinase activity, suggesting that these tetramers are structurally different 

from the inactive tetramers that form at elevated NaCl concentrations.  

The sensor domain of histidine kinases is usually required to detect signals, the 

exception being EnvZ, which was shown to receive signal through its DHp domain 

(23). It is therefore likely that Hik2 employs a DHp-based signal perception 

mechanism for its salt sensing activity. We tested this possibility using three different 

variants of the Hik2 protein. Our result showed that the truncated forms of Hik2, 

consisting of the core kinase domain or DHp domain alone, were both present as a 

higher order oligomer and that treatment with NaCl converted them into the lower 

form of oligomer.  We conclude that that the salt sensing activity of Hik2 is confined 

to its DHp domain. In addition to salt, the GAF domain of Hik2, which is found in 

class I Hik2s, might be involved in perceiving additional signal(s) such as redox or it 

might bind small ligand(s) required to regulate its autophosphorylation (24). Indeed, 

the Hik2 homologue in higher plants has been shown to bind the PQ analogue 

DBMIB with a Kd value similar to other quinone binding proteins (25); it also forms a 

quinone adduct (26).    
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Figure 10 proposes a working model of signal perception mechanism of Hik2. In the 

absence of salt or redox stresses, the Hik2 is autokinase active and transfers 

phosphoryl groups to the response regulators Rre1 and RppA, while Phospho-Rre1 

activates genes coding for phycobilisomes. However, in the presence of salt/osmotic 

stress, the active hexameric form of Hik2 is rearranged into the inactive tetrameric 

form. Rre1 and RppA therefore remain in their unphosphorylated states. As a result, 

Rre1 can no longer act as a repressor of salt/osmotic tolerance genes, in turn releasing 

the repression of their transcription. We are unable to determine the precise symmetry 

of the oligomeric forms described here. For example, the hexamers could be either 

trimers of dimers of 32-point group symmetry or hexamers of hexagonal symmetry 

(point group 6). Similarly, the tetramers could be dimers of dimers (point group 22), 

or tetramers of tetragonal symmetry (point group 4), and tetragonal tetramers may 

assemble into octamers as dimers of tetramers (point group 42).  Conversion between 

hexamers and tetramers is likely to involve only oligomers of the aforementioned 

symmetries. This conversion between oligomers would be possible if conformations 

of the subunits change during the transition. The molecular basis of a mechanism by 

which elevated Na+ concentrations trigger recombination of hexamers into tetramers 

could therefore be twofold. Na+ may interfere with salt bridges that stabilise 

intersubunit interfaces at low salt concentrations. In addition, Na+ may induce 

conformational changes in the protein subunits thus leading to disruption of 

intersubunit interactions in the hexamers and favouring formation of new protein-

protein interfaces that result in inactive tetramers.  

Hik2 is of special interest because of the presence of its homolog in all known 

cyanobacteria as well as in chloroplasts (Table 1).  In eukaryotes Hik2 has been 

identified as Chloroplast Sensor Kinase (CSK) that is encoded in the nucleus and 
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synthesized in the cytosol for post-translational import and processing in chloroplasts 

(11, 27).  CSK couples the redox state of the photosynthetic electron transport chain 

to chloroplast gene transcription by acting on plastid transcriptional regulators (25, 

28).   It will be important to determine whether the oligomerization that we propose as 

the basis of regulation by sodium ions is also a mechanism that extends to redox 

regulatory control of the activity of all Hik2 proteins, including CSK.   

 

MATERIALS AND METHODS 

Construction of recombinant plasmids. Coding sequences were cloned using the 

primer pairs listed in Table 3. These correspond to: the full-length Synechocystis sp. 

PCC6803 Hik2 (slr1147); and the Thermosynechococcus elongatus BP-1 (tlr0195) 

full-length, kinase domain corresponding to amino acid 142-386; and the DHp 

domain corresponding to amino acid 142-270.  PCR products were digested with NdeI 

and SalI endonucleases (New England BioLabs) and cloned into pET-21b (Novagen) 

expression vector digested with NdeI and XhoI. The identities of the recombinant 

clones were confirmed by sequencing (results not shown).  

Expression and purification of recombinant Hik2. Recombinant plasmids were 

transformed into E. coli BL21(DE3) chemically competent cells (Stratagene). 

Transformed bacterial colonies, grown on agar plates, were used to inoculate starter 

cultures (10 mL each) in Luria Broth (LB) growth media (29) with 100 μg mL-1 

ampicillin as the selectable marker. Each culture was grown overnight, diluted 1:100 

in 1 L of LB media, and then grown at 37 ºC to an optical density at 600 nm of ~ 0.55 

before inducing protein expression with 0.5 mM IPTG (Melford). Bacterial cultures 

were then grown for a further 16 hours at 16 ºC. Cells were harvested by 
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centrifugation at 9,000 x g for 10 minutes at 4 ºC. The pellet was suspended in a 

buffer containing 300 mM NaCl, 20 mM Tris-HCl adjusted to pH 7.4, 25 mM 

imidazole, and 1 mM PMSF, and the cells were then lysed with an EmulsiFlex-C3 

homogenizer (Avestin). The lysate was separated by centrifugation at 39,000 x g for 

20 min at 4 ºC. The supernatant was applied to a Ni2+ affinity chromatography column 

(GE Healthcare) and purified according to the column manufacturer’s instructions.  

Chemical crosslinking. The full-length Hik2 protein was desalted into crosslinking 

reaction buffer (25 mM HEPES-NaOH at pH 7.5), 5 mM KCl, and 5 mM MgCl2) 

using a PD-10 desalting column (Amersham Biosciences). Chemical crosslinking was 

carried out in a total reaction volume of 20 µL containing varying concentrations of 

Hik2 protein in crosslinking reaction buffer. The crosslinking agent 

dithiobis(succinimidylpropionate) (DSP)  (30)was added from 24.73 mM stock 

solution in dimethyl sulfoxide to give a final DSP concentration of 2 mM. Reactions 

were incubated at 23 ºC for 4 minutes. Reactions were stopped by addition of a 

solution containing 50 mM Tris-HCl and 10 mM glycine giving pH 7.5. The above 

reaction was repeated with 2 µM Hik2 and varying concentrations of DSP. 2 µg of 

crosslinked proteins were resolved upon 10 % SDS-PAGE (sodium dodecyl sulfate 

polyacrylamide gel electrophoresis) and the gel stained with Coomassie Brilliant Blue.  

In vitro autophosphorylation. Autophosphorylation was performed with 2 µM of 

purified recombinant Hik2 protein in a kinase reaction buffer (50 mM Tris-HCl at pH 

7.5, 50 mM KCl, 10 % glycerol, and 10 mM MgCl2) in a final reaction volume of 25 

µL. The autophosphorylation reaction was initiated by the addition of 5 µL of a 

solution containing 2.5 mM disodium ATP (Sigma) with 2.5 µCi [γ-32P]-ATP (6000 

Ci mmol-1) (PerkinElmer). Reactions were incubated for 15 seconds at 22 ºC. Cross-

linking was performed as above except that the autophosphorylation reaction was 
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terminated, in this case, by addition of 6 µL of 5-fold concentrated non-reducing 

Laemmli sample buffer (31). Reaction products were resolved using a 12 % non-

reducing SDS-PAGE gel.  The gel was rinsed with SDS running buffer and 

transferred into a polyethylene bag. The sealed bag was exposed to a phosphor plate 

overnight. The incorporated γ-32P was visualized using autoradiography.  

Sequence Analysis. Sequence similarity search was carried out with blastP and blastn 

(32) using the public databases Cyanobase  (http://genome.kazusa.or.jp/cyanobase) 

and Joint Genome Institute (JGI) (http://www.jgi.doe.gov/). Domain prediction was 

carried out using the SMART database (http://smart.embl-

heidelberg.de/smart/set_mode.cgi?NORMAL=1) (33).  

Transmission electron microscopy (TEM) and single particle analyses. Five 

independent Hik2 samples were subjected in turn to a dilution series, applied to 

carbon-coated (thin-layer) copper 300-mesh EM grids (Agar, Ltd.), and negatively 

stained using freshly prepared 2 % uranyl acetate. A protein concentration that 

ensured an even spread of single particles over the carbon film surface was found for 

each sample and dilution. 201 micrographs (each being 2672 x 2672 pixels) were 

recorded using an Olympus Morada CCD camera system attached to a JEOL model 

1230 TEM equipped with a tungsten filament and operating at 80,000 × magnification 

and 80 keV. This gave a sampling frequency of 5.962 Å per pixel at the specimen 

scale, however, a limitation of ~ 15 Å resolution is expected to result from the 

presence of the negative stain. The Fourier-space power spectrum was calculated for 

each micrograph and 41 micrographs were chosen for further single particle analysis 

on the basis that they displayed minimal drift and astigmatism and had a first 

minimum at better than ~ 17 Å resolution. Single particle complexes were floated out 

into boxes of 64 x 64 pixels in size. Given that no correction was applied for the 
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contrast transfer function (CTF) the final class averages were low band-pass filtered 

to ~ 20 Å resolution. Initial single particle images were selected using the ‘boxer’ 

module of EMAN2 (34), with the boxing algorithm directed to pick automatically all 

possible single particles present, but not to band-pass or normalise. The Imagic-5 

software environment (35) was then used for image normalisation, band-pass filtering, 

reference-free alignment and multi-variate statistical classification of the single 

particle image dataset.  
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FIGURE LEGENDS 

Figure 1  

Domain Architecture of Hik2 Proteins. The amino and the carboxy termini are 

shown are shown as N and C, respectively. The domain architecture of Hik2 was 

predicted using the SMART database (33). The predicted sensor domain is shown as 

GAF. The kinase core contains the DHp and CA domains. The colour corresponds to 

different forms of Hik2 proteins; i.e. blue representing the full-length, class I Hik2 

protein and green representing class II Hik2 protein.     

 

Figure 2  

Protein overexpression and purification. The full-length Synechocystis sp. PCC 

6803 and Thermosynechococcus elongatus BP-1 Hik2, and the truncated form of 

Thermosynechococcus elongatus BP-1 were overexpressed and purified as described 

in the experimental section.  The following samples were loaded on a 10 % SDS-

PAGE. Lane 1, protein molecular mass marker; lane 2 is total cell fraction before 

IPTG induction; lane 3-6 are total cell fractions after IPTG induction:  lane 3, full-

length Synechocystis Hik2 (Syn_Hik2F); lane 4, Thermosynechococcus elongatus BP-

1 full-length Hik2 (Ther_Hik2F); lane 5, Thermosynechococcus truncated form 

(Ther_Hik2T); lane 6, Thermosynechococcus DHp domain (Ther_DHp); lane 7-10 

correspond to elution fractions from the Ni2+ affinity chromatography column: lane 7, 

Syn_Hik2F; lane 8, Ther_Hik2F; lane 9, Ther_Hik2T; lane 10, Ther_DHp. The 

positions of the overexpressed proteins are indicated on the right, and the molecular 

masses of selected marker proteins are indicated on the left. 

 

Figure 3  
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Effects of chemical crosslinking and protein concentration on the oligomeric 

state of Synechocystis sp. PCC 6803 Hik2. A. Chemical crosslinking. Lane 1 

shows protein molecular mass markers; lane 2, untreated Hik2 protein (control); lane 

3, Hik2 treated with 1 mM DSP; lane 4, Hik2 treated with 2 mM DSP; lane 5, Hik2 

treated with 3 mM DSP; lane 6, Hik2 treated with 4 mM DSP; lane 7, Hik2 treated 

with 5 mM DSP; lane 8 Hik2 treated with 6 mM DSP; lane 9, Hik2 treated with 7 mM 

DSP; lane 10, Hik2 treated with 9 mM DSP, lane 11, 10 mM treated with 10 mM 

DSP, lane 12 treated with 11 mM DSP. Samples were subjected to non-reducing 10 % 

SDS-PAGE. The molecular masses are shown on the left in kDa. The oligomeric 

states of Hik2 are indicated on the right.  B. Protein concentration. Lane 1 shows 

protein molecular mass markers. Lane 2, 2 µM untreated Hik2 protein. Proteins in the 

following lanes were cross-linked at the following protein concentrations: lane 3, 2 

µM; lane 4, 3 µM; lane 5, 4 µM; lane 6, 5 µM; lane 7, 10 µM; lane 8, 15 µM; lane 9, 

20 µM; lane 10, 25 µM; lane 11, 30 µM; lane 12, 35 µM; lane 13, 40 µM; lane 14, 45 

µM; and lane 15, 50 µM. Molecular masses are shown on the left hand side in kDa. 

Different oligomeric states are labelled on the right hand side of the gel. 

 

Figure 4  

Functional characterisation of oligomeric states of Synechocystis sp. PCC 6803  

Hik2. A) Autophosphorylation activity of Hik2. Lane 1 shows protein molecular mass 

markers; lane 2, Hik2 protein that was allowed to autophosphorylate before 

crosslinking; lane 3, Hik2 protein that was first crosslinked, followed by 

autophosphorylation. B) Effect of salt on the oligomeric state of Hik2. Lane 1 shows 

protein molecular mass markers; lane 2, shows untreated Hik2 protein (control); lane 
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3, salt untreated Hik2 crosslinked; lane 4, salt treated Hik2 crosslinked. Different 

oligomeric states are labelled on the right hand side of the gel. 

 

Figure 5  

Separation of Hik2 oligomers by size exclusion chromatography.  

Typical elution profiles of Hik2 proteins on a Superdex 200 column eluted with a 

buffer containing 20 mM Tris-HCl (pH 7.6) and 10 mM NaCl (solid line) or with 20 

mM Tris-HCl (pH 7.6) and 500 mM NaCl (dotted line). A) Syn_Hik2F; B) 

Ther_Hik2F; C) Ther_Hik2T; D) Ther_DHp. The positions of hexamers, tetramers 

and octamers are shown. E) Calibration curve (E, 10 mM NaCl, and F,  500 mM 

NaCl) of the Superdex 200 using standard proteins of known molecular weight: 

Apoferritin (443 kDa), Alcohol dehydrogenase (150 kDa), and Carbonic anhydrase 

(29 kDa). Blue dextran (2000 kDa) was used to determine the void volume (Vo). Ve 

is the effluent volume.   On the y-axis the base ten logarithm of the protein molecular 

mass is shown, and on the x-axis Ve/Vo is shown.  

 

Figure 6 

Characteristic micrograph of a negatively stained Synechocystis Hik2 protein 

sample. A typical micrograph as observed by TEM at 80,000 × magnification. Bar 

represents 100 nm. 
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Figure 7 

Structural heterogeneity of the Hik2 single particle TEM-derived dataset. The 

structural heterogeneity was revealed by relaxing the classification constraints, 

presenting all possible single particles automatically particle-picked from the 

micrographs as 600 characteristic views (class averages). Each boxed side of a single 

characteristic view represents 382 Å. 

 

Figure 8 

Classification of the Hik2 single particle TEM-derived dataset. After 4 rounds of 

iterative refinements, the dataset was classified into 100 characteristic views (class 

averages). These views were re-ordered by visual inspection into oligomers of 

increasing diameter. Statistical analysis of this classification (see Table 2) revealed 

that these views represent 11,371 particles, which were subsequently attributed to 

oligomers ranging from monomers through to double-trimers (hexamers), and 

stacked/double tetramers (octamers). The side of each box, within which individual 

characteristic views are floated, represents 382 Å in length, thus a typical monomer is 

∼80 Å in diameter and the largest views are ∼180 Å in long axis. 

 

Figure 9  

Single particle averages of negatively stained samples imaged by transmission 

electron microscopy (TEM). After the image-processing techniques of multivariate 

statistical analysis and subsequent averaging a series of Hik2 protein complex 

subpopulations or families was observed by TEM of negatively stained samples. 
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Comparison of this figure with Table 2 provides a detailed statistical outcome for 

each subpopulation. Four representative averages for each family are shown. These 

are attributed to oligomeric states of a) monomers, b) dimers, c) trimers or potential 

double trimers (hexamers) in projection, d) tetramers, potential double trimers 

(hexamers) or double tetramers (octamers) in side elevation, e) characteristic views of 

the remaining family of broken complexes or those with extraneous density visible. 

The Synechocystis sp. PCC 6803 Hik2 monomer has a molecular mass of ~50 kDa. 

Protein is white, stain black. The scale bar is 10 nm. 

 

Figure 10  

Proposal for a Hik2-based signal transduction pathway in cyanobacteria. The 

hexameric form of Hik2 is autokinase active and the oligomeric state of Hik2 is 

regulated by signals from Na+ and the photosynthetic electron transport chain. The 

active hexameric form of Hik2 is converted to an inactive tetramer upon salt stress.   

 

 



 

 

Species 

Domain architecture 
of Hik2  

Full-length  Truncated 

Synechocystis sp. PCC 6803 �  

Synechococcus sp. PCC 7002 �  

Cyanothece sp. PCC7822 �  

Cyanothece sp. PCC 8802 �  

Cyanothece sp. PCC 8801      �  

Cyanothece sp. PCC 7424 �  

Cyanothece sp. ATCC 51142 �  

Cyanothece sp. PCC 7425 �  

Crocosphaera watsonii WH0003 �  

Crocosphaera watsonii.WH8501 �  

Fischerella sp. JSC-11 �  

Nostoc punctiforme PCC 73102 �  

Nostoc sp PCC 7120 �  

Cyanobacterium UCYN-A �  

Cylindrospermopsis raciborskii_CS-505 �  

Microcoleus chthonoplastes PCC 7420 �  

Microcoleus vaginatus FGP-2 �  

Microcystis aeruginosa NIES-843 �  

Raphidiopsis brookii D9 �  

Moorea product 3L �  

Nodularia spumigena CCY9414 �  

Anabaena variabilis ATCC 29413 �  

Nostoc azollae 0708 �  

Arthrospira maxima CS-328 �  

Arthrospira maxima CS-328 �  

Arthrospira sp. PCC8005 �  

Arthrospira platensis str. Paraca �  



Lyngbya sp. PCC 8106 �  

Oscillatoria sp. PCC 6506 �  

Thermosynechococcus elongatus BP-1 �  

Trichodesmium erythraeum IMS101 �  

Acaryochloris marina MBIC 11017 �  

Synechococcus sp. PCC7335 �  

Acaryochloris sp. CCMEE 5410 �  

Synechococcus elongatus PCC 7942 �  

Synechococcus elongatus PCC 7942 �  

Synechococcus elongatus PCC 6301 �  

Nodularia spumigena CCY 9414 �  

Synechococcus sp. WH 5701 �  

Synechococcus sp. CB 0205 �  

Synechococcus sp. RCC 307 �  

Synechococcus sp. WH 8016 �  

Synechococcus sp. WH7805 �  

Synechococcus sp. CC9605 �  

Synechococcus sp. WH 7803 �  

Prochlorococcus marinus str. MIT 9301 �  

Prochlorococcus marinus str. AS 9601 �  

   

Synechococcus sp. JA-2-3B'a(2-13)  � 

Synechococcus sp. JA-3-3Ab  � 

Gloeobacter violaceus PCC 7421  � 

   

Cyanidioschyzon merolae �  

Phaeodactylum tricornutum �  

Thalassiosira pseudonana �  

Oryza sativa �  

Arabidopsis thaliana �  



Populus trichocarpa �  

Physcomitrella patens �  

Ostreococcus tauri �  

Ostreococcus lucimarinus �  

Chlorella vulgaris C-169 �  

 

Table 1. Distribution of full-length and truncated forms of Hik2. Tick (�) 

indicates the presence of Hik2.  

Full-length Hik2 proteins (forming Class I) contain the GAF domain as predicted with 

the SMART database. Truncated Hik2 proteins (forming Class II) are predicted to 

have no GAF domain. Names of chloroplast-containing species are coloured green. 

 



 

Monomers Dimers Trimers Double 

dimers / 

hexamers 

Broken or 

extraneous  

107 82 106 86 289 

133 111 152 164 94 

129 138 137 83 112 

124 109 197 95 107 

95 88 102 78 98 

127 128 213 182 90 

85 129 111 47 122 

90 96 164 68 141 

121 125 117 202 121 

99 117 119 181 91 

87 102 168 92 128 

106 94 102 169 127 

81 117 143 124 123 

107 85 165 161 129 

 91 100 85 84 

 117 57 47 74 

 99 92 133 111 

   67 76 

   115 105 

   115 140 

   70 103 

   114 99 

   71  

   70  



   69  

   113  

   83  

   125  

   82  

   98  

     

14 avgs 17 avgs 17 avgs 30 avgs 22 avgs Avgs 100=  classums_100_4

c.img 

1491 1828 2245 3189 2564 11,317 classified 

particles 

13 % 16 % 20 % 28 % 23 % 100 %  

     2,024 junk, removed 

    Avgs = 

averages 

13,341 Total, 41 

micrographs 

 

Table 2. Single particle image processing statistics relating to the characteristic views (averages) 

presented in Figure 8 (100 averages), the final classification of the dataset derived from 

micrographs of which Figure 6 is typical. Each number below refers to the single particles present 

in each average; e.g. the first monomer average, contains 107 particles. 

 



 

– Synecho_Hik2 (cloned in pET-21b) 

Forward: GCGCGCcatatgGCCGGTTCCATCTCA 

Reverse: GCGCGCctcgagCACTTGTTCTCCAGAGCG 

 

– Thermo_Hik2F (cloned in pET-21b) 

Forward: GCGCcatatgATGCTCTGGCCAGCCAGT 

Reverse: GCGCGCgtcgacTGGTTCCACCTTCATTTG 

 

– Thermo_Hik2T (cloned in pET-21b)  

Forward: GCGCcatatgATGCACTCCCCTGCCCAGCCA 

Reverse: GCGCGCgtcgacTGGTTCCACCTTCATTTG 

 

– Thermo_DHp (cloned in pET-21b) 

Forward: GCGCcatatgATGCACTCCCCTGCCCAGCCA 

Reverse: GCGCgtcgacTTCCTCGAGCCAGATCGG 

 

 

Table 3. Primers used for Hik2 cloning 

Sequences in lower case are restriction site overhangs. Sequences underlined are codons for 

alanine.  

 






















